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In this paper, we present a three-dimensional numerical study of glass melt in a small scale circular cru-
cible heated by two rod electrodes. Lorentz forces are imposed into the melt by applying an additional
external magnetic field. The coupled non-linear conservation equations for mass, momentum, energy
and electrical charge are solved with the commercial finite volume code FLUENT. We perform numerical
parameter studies by varying the magnetic flux density and the electrode potential to verify the influence
of the Lorentz force on the velocity and temperature distribution in the crucible. We observe that the Lor-
entz force leads to an overall increase of the kinetic energy. Especially below the electrodes, a region
which is not affected by buoyancy, the Lorentz force increases the velocity significantly. If the Lorentz
force is the dominating driving force the mean velocity is almost a linear function of the Lorentz force.
For counteracting Lorentz force and buoyancy between the electrodes we find a discontinuous modifica-
tion of the flow pattern during the transition from buoyancy dominated to a Lorentz force dominated
flow regime and vice versa. Even more, we pass through a hysteresis and obtain two steady solutions
for one set of parameters depending on the starting conditions. Furthermore, we identify regimes in
which we have a significant improvement of the temperature homogenization. The results show that Lor-
entz forces provide a new way to influence thermally driven convection of molten glass and can lead to
the improvement of mixing.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Over the last decades the need to produce high quality glass has
significantly increased, which requires highly homogenous glass
melt. Several techniques like electric boosting, mechanical stirring,
and bubbling are applied to increase the homogenization rate. Be-
side the already established mixing techniques one would like to
know, if Lorentz forces

fL ¼ J� B0;

generated by a current density J and an external magnetic field B0,
can considerably influence the flow and can avoid undesired flow
pattern. Especially in melter configurations with electrodes, like in
all-electric melting furnaces, forhearts, or feeders and even electric
furnaces for high nuclear waste, this technique is of great interest
as the magnetic field is provided contactlessly without introducing
additional impurities into the melt. The Lorentz force can be consid-
ered as a global force because it is acting in all regions of the melt
where J and B0 are non-zero. But in order to create sufficient large
magnetic fields the dimensions of the device should be small. While
ll rights reserved.
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the application of electromagnetic forces for flow control in other
areas of material processing like steel casting and production of alu-
minum is well established [7], the application of electromagnetic
forces in glass melts is a comparable new topic. The difficulty with
glass melts arises from the fact that their electrical conductivity is
nearly five orders of magnitude smaller than that of liquid metals.
The goal of the presented work is to model numerically the influence
of Lorentz forces in glass melt in a three-dimensional crucible config-
uration which includes the steady Navier–Stokes equation, the En-
ergy equation and the Laplace equation for the electric potential. It
allows us to investigate systematically how varying electrode poten-
tials and magnetic flux densities influence the electromagnetically
controlled flow of glass melts, and how strong a electromagnetic
force ought to be to achieve significant effects. The presented numer-
ical study with the commercial software FLUENT should be consid-
ered as a first step towards a better understanding of electro-
processing of molten glass as it is performed for a laboratory scale
configuration and as it neglects internal heat transfer by radiation.

Methods to use imposed Lorentz forces for homogenization of
glass melt were first patented by Walkden in [40]. Without giving
technical details, he suggested different arrangements in feeders
and furnaces and recognized that the method allows for the
production of a variety of different glass flow pattern. Later, vari-
ous patent applications suggested the use of Lorentz forces for
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Nomenclature

A viscosity parameter
B viscosity parameter
Br Brinkman number
B0 magnetic flux density
cP heat capacity
D diameter
D symmetric stretching tensor
E conductivity parameter
fb gravitational force
fL Lorentz force
g interpolation formula
g acceleration of gravity
Gr Grashof number
h heat transfer coefficient
H filling level
Ha Hartmann number
J electric current density
Nu Nusselt number
p pressure
Pr Prandtl number
R radius

Ra Rayleigh number
T temperature
u velocity field
UE electric potential difference
x,y,z Cartesian coordinates
a maximum stretching function
b thermal expansion coefficient
� emissivity
g viscosity
k heat conductivity
/ electric potential
q density
r electrical conductivity
rsb Stefan–Boltzmann constant

Subscripts
0 measured for B0 ¼ 0 T
max maximum
min minimum
air air
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homogenization [27,30,15] and for the flow control of glass melts
in forehearts and feeders [25]. In [29] Osmanis showed experimen-
tally the influence of electromagnetic stirring on the glass quality
and first mentioned the dimensions of the presented laboratory
scale setup. This concept of electromagnetic control of buoyant dri-
ven convection in a small scale crucible was later taken up by Krie-
ger and co-workers. They have proven the existence of the imposed
Lorentz forces in glass melt on the basis of temperature measure-
ments [17,20], stria formation in stacked melts using colored and
colorless glass, and calculated the velocities on the basis of
cross-correlation of temperature fluctuations [21]. Analytical
one-dimensional models of molten glass in electromagnetically
controlled pipe flow [12] and electromagnetically controlled ther-
mal convection in a closed loop [13,14] give the mean velocity and
temperature distribution as a function of the imposed Lorentz
force. They allow extensive parameter studies and can provide a
good understanding of the underlying basic physical mechanism.
But neither the analytical modeling nor the experiments can give
an answer to the following questions: how is the transition from
a purely buoyant driven flow to a mainly Lorentz force driven flow
characterized and how are the flow pattern and temperature distri-
bution influenced by the Lorentz force? Does the velocity depend
linearly on the Lorentz force in a three-dimensional configuration
as predicted by the one-dimensional analytical models? The pre-
sented paper will give answers to these questions with three-
dimensional numerical simulations of a laboratory scale setup
which was used in the experimental studies of [20].

Recently, the setup was studied numerically by Cepite and co-
workers in [2]. The only objective of this work is to reflect the
experimental data without systematic variation of the Lorentz
force magnitude. Furthermore, papers on mathematical modeling
of electric furnaces are relevant for our numerical studies, which
number is limited. In his pioneering work Curran [6] studied the ef-
fects of different electrode configurations in a two-dimensional
model followed by Austin and Bourne [1] and Mardorf and Woelk
[26] who included a feeding rate of the batch. Chen and Goodson
[3] presented three-dimensional results assuming constant mate-
rial properties except in the buoyancy term. Between 1986 and
1988 some papers about three-dimensional simulations of indus-
trial all-electric furnaces were published, which focused on the
arrangement and orientation of multiple electrodes and include
the pull rate of the batch and the temperature-dependent material
properties [4,5,37–39]. Due to the limited computational power at
that time the grid refinement was extremely limited. With com-
bined experimental and three-dimensional numerics Hiemjima
et al. [16] studied the possibility to control the glass convection
with various electric boosting conditions, heat loss through the
walls and the charged glass batch.

The paper is organized as follows. In the next section we formu-
late the considered problem and in Section 3 we describe the
implementation of the numerical model. It includes a detailed
description of the mesh analysis. After that, we study the results
in Section 4. In the first part of Section 4 the Lorentz force distribu-
tion is explained followed by a detailed discussion of the velocity
and temperature distribution for various parameter settings. The
section closes with some global analysis of the results. Finally,
we summarize the key results of the work and give some conclud-
ing remarks in Section 5.
2. Formulation of the problem

The present approach is to study the electromagnetically
controlled thermal convection of glass melt in a small scale cylindri-
cal crucible. The inner radius of the laboratory crucible is R ¼ 0:04 m
and the fill level of the molten glass is H ¼ 0:08 m. Two rod
electrodes with a diameter of D ¼ 0:013 m are symmetrically
immersed 0.06 m into the melt from the top at ðx; yÞ ¼
ð�0:0165 m;0 mÞ and at ðx; yÞ ¼ ð0:0165 m;0 mÞ, see Fig. 1. The pre-
scribed setup has two symmetry planes, namely the plane x ¼ 0 m
and the plane y ¼ 0 m which are shown in Fig. 2.

The glass melt is assumed to be Newtonian with a constant heat
capacity cP and the viscosity gðTÞ and the electrical conductivity
rðTÞ being exponential functions of the temperature T. The viscos-
ity is a decreasing function of the temperature and can be approx-
imated by the Vogel–Fulcher–Tammann equation

gðTÞ ¼ g0 exp
A

T þ B

� �
; ð1Þ

with the constants g0, A and B depending on the specific glass [28].
The electrical conductivity increases with temperature and can be
expressed by the Rasch–Hinrichsen equation [28]



Fig. 1. Sketch of the considered problem.
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rðTÞ ¼ r0 exp � E
T

� �
: ð2Þ

Again the constants r0, E and F depend on the glass type. Fur-
thermore, the density .ðTÞ is assumed to be a linear function of
temperature and the heat conductivity kðTÞ is approximated by a
quadratic function of temperature. The basis for the functional
description of qðTÞ and kðTÞ are experimental measurements of
both quantities for the considered composition.

Between the electrodes a constant electric potential difference
UE is applied. As a result we obtain a current density distribution
J which is heating the melt due to the Joule effect with the volu-
metric heat input J2=r. As we have heat losses at the surface and
the crucible walls, temperature and density gradients develop in
the melt. Thus, with the acceleration of gravity g ¼ gez, the gravi-
tational force

fb ¼ .gez;

leads to buoyancy which is driving the flow. Such buoyant driven
convection is the basis of so-called all-electric furnaces and already
a b

Fig. 2. Views of the symmetry planes of the glass bath at (a) y ¼ 0 m and (b)
x ¼ 0 m with 1 being the crucible wall, 2 the electrode surface, 3 the free surface of
the melt, 4 the symmetry plane y ¼ 0 m and 5 the symmetry plane x ¼ 0 m.
well studied. In this paper, we focus on the question, how thermal
convection can be influenced by Lorentz forces fL . In practical appli-
cations one would like to know, how the homogeneity or mixing
rate can be improved with such an additional force. To generate Lor-
entz forces we suppose that a homogenous and steady magnetic
flux density B0 ¼ B0ey is given for the whole crucible as indicated
in Fig. 1. With the definition of B0 the imposed Lorentz force simpli-
fies to

fL ¼ fLxex þ fLzez ¼ JzB0ex � JxB0ez: ð3Þ

Hence, we have one Lorentz force component acting in ex-direc-
tion and one component acting in ez-direction, namely fLx and f Lz.
The model for constant UE and B0 holds also for a low frequency
electric potential and a magnetic flux density of the same fre-
quency which would be used in practice to minimize corrosion
as at low frequencies the skin depth is large in comparison to the
crucible dimensions.

In our considerations we neglect effects of induced currents and
viscose heating which is usually valid for the flow of glass melts. To
estimate these effects we take the following parameter values:
r0 � 1—10 S=m, g0 � 1—10 Pa s, k0 � 1 W=mK, cP � 1000 J=kg K,
q0 � 3000 kg=m3, a thermal expansion coefficient of b � 10�4, a typical
length scale of L0 � 0:04 m, a typical velocity of u0 ¼ 10�4—10�2 m=s
and a typical temperature difference of DT � 100 K. For this scales
the induced currents rðu0 � B0Þ are negligible because of a small
Hartmann number

Ha ¼ B0L0

ffiffiffiffiffiffi
r0

g0

r
� 1;

which describes the ratio between induced electromagnetic force
and the friction force [8]. The viscose heating is negligible compared
with the heat conduction since the ratio of both, the Brinkman
number, is

Br ¼ g0u2
0

k0DT
� 1:

Furthermore, we do not take into account internal radiative
heat transfer as the considered glass is almost completely non-
transparent even for thin layers.

During our studies we only model the glass bath and assume
laminar and steady flow. This assumption is valid due to the Ray-
leigh number Ra of the system, which is

Ra ¼ gbDTL3q2cP

g0k0
< 105:

The change from a steady symmetric laminar (first instability)
to a symmetry breaking but still steady and laminar regime (sec-
ond instability) was observed for Ra > 105 in convection cells with
bottom-heated and top-cooled walls (Benard cells) [22,23] and in
cavities with internal volumetric heat sources [24].

The three-dimensional steady flow is governed by the mass
conservation equation

r � ð.uÞ ¼ 0; ð4Þ

and the Navier–Stokes equation

r � ð.uuÞ ¼ �rpþr � g ruþruT
� �� �

þ .gez þ ðJzex � JxezÞB0;

ð5Þ

with the following boundary conditions:

u ¼ 0 at the electrodes and crucible wall; ð6Þ

u � n ¼ 0; rðu � tÞ � n ¼ 0 at the flat free surface; ð7Þ

where n denotes the normal vector and t the tangential vector of
the considered boundary faces. The left hand-side of the Navier–



Table 1
Thermophysical properties of the composition 47.7%BaO–20.0%B2O3–27.1%SiO2–
5.2FeO2 (all data in mass%).

Property Glass 3

Viscosity g 9:92� 10�2 Pa s � exp 1046:20 K
T�1033:41 K

� �
Electrical conductivity r 1:74� 106 S

m � exp � 20;300 K
T

	 

Density q 3931:5 kg

m3 � 0:3953 kg
m3 K � T

Heat conductivity k 2� 10�6 W
mK3 � T2 � 3:2� 10�3 W

mK2 � T þ 2:68 W
mK

Heat capacity cP 1285 J
kg K
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Stokes equation (5) represents inertia whereas the right hand-side
represents the body forces. The driving forces are the buoyancy
and the imposed Lorentz force. The velocity boundary conditions
are chosen to correspond to the physical model, i.e. no slip bound-
ary condition at the crucible wall and the electrodes, Eq. (6), and
free slip boundary condition at the flat free surface, Eq. (7).

The energy equation is solved to determine the temperature T of
the melt. With the prescribed assumptions the equation for T is
then

cPr � ðu.TÞ ¼ r � ðkrTÞ þ J2

r
; ð8Þ

with the boundary conditions

�ðkrTÞ � n ¼ hðT � T1Þ at the crucible wall; ð9Þ

�ðkrTÞ � n ¼ �rsbðT4 � T4
1Þ at the free surface; ð10Þ

ðrTÞ � n ¼ 0 at the electrodes ð11Þ

with the ambient temperature T1, the emissivity � and the Stefan–
Boltzmann constant rsb. The energy equation (8) expresses the
balance between heat convection on the left hand-side and heat
conduction and heat production on the right hand-side. The heat
transfer coefficient h specifies the convective heat transfer at all
crucible walls, Eq. (9). Under the assumption that h is constant
and equal for the whole crucible wall, we evaluated h theoretically.
The derivation of h is given in Appendix A. At the free surface of the
melt we assume radiative heat transfer expressed with the Stefan–
Boltzmann law, Eq. (10), where � has to be determined experimen-
tally. The heat flux ðrTÞ � n is assumed to be zero at the electrodes
to be consistent with adiabatic conditions. Note, that effects of
internal radiation are neglected throughout our considerations. To
calculate the heat input qin and the Lorentz force fL we evaluate
the Laplace equation for the scalar field of the electric potential /,
which is

r � ð�rr/Þ ¼ 0: ð12Þ

Eq. (12) results from Ampère’s law r � J ¼ 0 and Ohm’s law
J ¼ �rr/. The electrodes and crucible wall are made of platinum
with an electrical conductivity five orders of magnitudes higher
than that of glass melt. Basically, we can assume that the elec-
trodes and the crucible wall are equipotential surfaces with a con-
stant electric potential, i.e. we define

/ ¼ �UE=2 at the electrodes; ð13Þ
/ ¼ 0 at the crucible wall: ð14Þ

For the model the planes x ¼ 0 m and y ¼ 0 m are also the sym-
metry planes of the physical model. Firstly, the boundary condi-
tions are applied symmetrically and secondly, the Rayleigh
number does not exceed the critical Rayleigh number for symme-
try breaking. We verified this assumption with simulations of the
whole crucible for various parameter settings. Therefore, we only
model a quarter of the glass melt in the crucible. We define the free
slip boundary condition, Eq. (7), and the adiabatic boundary condi-
tion, Eq. (11), at both symmetry planes. If we have / ¼ �UE=2 at
one electrode, / ¼ UE=2 at the other electrode, and / ¼ 0 at the
crucible wall, the symmetric electric field gives us

/ ¼ 0 at the plane x ¼ 0 m; ð15Þ
ðr/Þ � n ¼ 0 at the plane y ¼ 0 m: ð16Þ

An analysis of the governing Eqs. (4)–(12) shows that the sys-
tem is highly coupled. Beside the well known coupling of velocity
and temperature field due to buoyancy in Eq. (5) and the heat con-
vection in Eq. (8) we have a coupling with the Laplace equation
(12) because of the Lorentz force and the Joule heat input in Eqs.
(5) and (8), respectively. Overall, the strong variation of the phys-
ical properties of the glass melt leads to a strong coupling as well.

The main focus is to evaluate the governing Eqs. (4)–(12) and to
obtain the unknowns of the system, which are the velocity u and
temperature T. We like to obtain an understanding of the Lorentz
force distribution and its effects on the flow. For this purpose we
systematically vary the magnetic flux density B0 and the electric
potential difference UE.

3. Implementation and numerical model

The calculations are performed for the composition 47.7%BaO–
20.0%B2O3–27.1%SiO2–5.2FeO2 (all data in mass%), which is charac-
terized by a low viscosity, e.g. g = 1.2 Pa s at a temperature of
1450 K. The composition results in a nearly black glass melt for
which the internal heat transfer by radiation is negligible. The ther-
mophysical properties have been measured and are given in Table
1. In Table 2 the remaining parameters are summarized.

The coupled set of Eqs. (4)–(12) has been solved using the com-
mercial software FLUENT which is developed to calculate coupled
thermohydrodynamic effects. Furthermore, it is possible to solve
the transport equation for scalar fields, which we use to solve
the Laplace equation (12). With User Defined Functions the Joule
heat input and the Lorentz force are calculated and introduced to
the Navier–Stokes equation (5) and the energy equation (8).

The descretization of the governing equations is done by the fi-
nite volume method [10]. For our calculations we have chosen the
implicit method with second-order accuracy. The pressure and
velocity are linked by the SIMPLE algorithm. We used the default
setting for the under-relaxation factors except for the energy equa-
tion, which we set to 0.9 as the strong coupling may led to unin-
tended oscillations if we had strong temperature variations. The
calculations terminated if the residuals of the continuity and the
velocity field were smaller than 10�6 and those of the energy and
the scalar field were smaller than 10�9. Furthermore, the conver-
gence was tested for each set of parameters by comparing the vol-
umetric heat input qin with the heat loss over the crucible walls
and the surface of the melt qout. For jqin � qoutj < 10�3 we assumed
convergence, which was the case for all presented results.

Fig. 3 shows views of the mesh, which was used for all pre-
sented calculations. The mesh consists of about 6:13� 105 ele-
ments and is generated with GAMBIT. The surface of the melt is
meshed using the boundary layer option for the crucible wall
and the electrode. In the remaining area an unstructured face mesh
is created which consists of quadrilateral mesh elements. The mesh
node pattern of this source-face is projected through the volume
with the Cooper meshing algorithm [11].

The number of cells (a) in the whole volume, (b) close to the free
surface, (c) around the electrode and (d) at the crucible wall may
significantly influence the results. The goal of the following mesh
analysis is to find a mesh which maps all parameters of the system
and the material properties very well. The influence of the mesh



Table 2
Parameter settings.

Parameter Value

Heat transfer coefficient h 4 W
m2 K

Emissivity � 0.6
Ambient temperature T1 1393 K
Stefan–Boltzmann constant rsb 5:67� 10�8 W

m2 K4
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resolution is studied separable for (a)–(d) with the test case
UE ¼ 15 V and B0 ¼ �40 mT. The meshes were validated on the ba-
sis of the maximum temperature Tmax in the melt. In Fig. 4 the evo-
lution of Tmax for each region of refinement (a)–(d) is shown.

Lets discuss in detail the need of refinement for the cases (a)–
(d):

(a) During the first mesh study we changed the average size of
all grid elements by varying the hight of the cells outside the
boundary layers from 1� 10�3 m to 7:5� 10�4 m and
5� 10�4 m and keeping all other settings of the mesh con-
stant. In Fig. 4(a) a change of Tmax can be observed tending
to an asymptotic value for decreasing element size. As the
reduction of the element size leads to an explosive increase
of the overall cell number and therefore to an explosive
increase of the computational time we have chosen an aver-
age element size of 7:5� 10�4 m for he final mesh.

(b) As we expected large temperature gradients at the surface of
the melt, we compared meshes with boundary layers thick-
nesses ranging from 8� 10�3 m to 1� 10�2 m and a thick-
ness of the smallest cells ranging from 1� 10�3 m to
4� 10�4 m, 2� 10�4 m and 1� 10�4 m. For this mesh stud-
ies we observed the maximum variations in Tmax as shown in
Fig. 4(b). But again the rate of changes also reduces with
reducing element size and tends to an asymptotic value.
As the ratio width/hight of an element should not exceed
1/10 [10], and the average width of a surface element is
1� 10�3 m we have chosen an element thickness of
1� 10�4 m.

(c) The need to study the influence of the grid size around the
electrode is twofold. First, the electric current flowing from
one rod electrode to another meets the greatest electric cur-
rent density in the immediate vicinity of the electrodes. Con-
sequently, these regions acquire high local temperatures. As
the electrical conductivity is increasing exponentially with
the temperature, a good mapping of the property law rðTÞ
X

Y

0.01 0.03

0.01

0.03

X

Z

0.01

0.01

0.03

0.05

0.07
a b

Fig. 3. Mesh for the quarter crucible corresponding to Fig. 1 at (a) z ¼ 0:04 m
requires a fine mesh in hot regions of the melt. Furthermore,
at the squared edges of the electrode the exact solution of
the Laplace equation (12) has a singularity. The numerics
yields in high values of r/ at the edges which require a
refinement as well [19]. We have compared a mesh without
boundary layer around the electrode with two meshes with
a boundary layer thickness of d ¼ 5� 10�3 m and the small-
est cell sizes of 4� 10�4 m and 2� 10�4 m. A significant
change can be observed if we compare meshes without
boundary layer. A refinement of the boundary layer cells
leads to an rapid convergence towards an asymptotic value,
see Fig. 4(c).

(d) The Prandtl number Pr, which describes the ratio between
thermal and viscous diffusion, is for glass melts about
Pr � 100. Furthermore, it is a measure of the ratio between
the velocity boundary layer thickness ds and the temperature
boundary layer thickness dt . As the relation Pr1=2 � ðds=dtÞ is
valid for laminar flow at a flat plate [36], we can expect that
dt is about 10 times smaller than ds. Due to the small dimen-
sions we do not expect free flow and have the smallest veloc-
ity boundary layer thickness between the electrode and the
crucible wall with ds ¼ 8:5� 10�3 m, and hence at theoretical
thermal boundary layer thickness of dt ¼ 8:5� 10�4 m. A
proper resolution with 10 cells requires an average cell thick-
ness of 8:5� 10�5 m. We studied the influence of the resolu-
tion of the thermal boundary layer by refining the thickness
the smallest cells at the crucible wall from 4� 10�4,
2� 10�4, 1� 10�4 to 5� 10�5. The results in Fig. 4(d) show
that the influence of the boundary layer thickness at the cru-
cible wall is negligible.

4. Selected results

During our simulations we vary the magnetic flux density be-
tween �120 mT 6 B0 6 120 mT and the electric potential differ-
ence between 3 V 6 UE 6 18 V. This is the order of magnitude of
effective magnetic flux densities one can generate for low frequen-
cies as it is used in the laboratory experiment [20]. For the chosen
parameter range of UE we are in a thermally stable regime and can
perform steady calculations. For larger UE the increasing tempera-
ture leads to an exponential increase of rðTÞ and thus, an amplifi-
cation of qin. The heat transport mechanism in the melt are not able
to compensate qin which results in higher temperatures. This self-
induced runaway of the temperature is also denoted as thermal
0.03

Y

Z

0.01 0.03

0.01

0.03

0.05

0.07
c

, (b) the symmetry plane y ¼ 0 m and (c) the symmetry plane x ¼ 0 m.
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Fig. 4. Studies of the mesh on the basis of the maximum temperature in the melt Tmax for varying element size: (a) size of the elements in the whole volume, (b) the element
height below the free surface, (c) grid size of the elements around the electrode and (d) at the crucible wall.
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instability [32,35] and can only be avoided by controlling the heat
input qin over the electrode potential [34] which requires time-
dependent calculations. The experiments [20] are conducted in a
thermally unstable regime. The heat input qin is kept constant by
continuous regulation of UE between 21 V and 22 V. Therefore, a
direct comparison of the results is not possible. The numerical sim-
ulations presented in [2] reach the temperature range of the exper-
iment with UE > 18 V and steady calculations. On the first sight
this seems to be a contradiction to the statement about thermal
instability just given. But the physical model of the numerics in
[2] contains a rough simplification as the authors define a constant
temperature at the crucible wall. This boundary condition imposes
a certain temperature range and avoids thermal instability. But the
presented flow pattern looks like the flow in so-called Hedly cells,
as the fluid is flowing downwards at all parts of crucible wall. In
our opinion the chosen boundary condition is not correct. In reality
the temperature at the wall is not controlled to a defined value. In-
stead, the heat transport at the wall is dominated by convection at
the outer surface. Therefore, the direct comparison of the simula-
tion and the experiment as given in [2] is not possible and does
not contribute to a better understanding of the physical phenom-
ena in electromagnetically controlled convection of glass melt.

Before we discuss the influence of the Lorentz force on the
velocity and temperature field let us have a closer look at the Lor-
entz force distribution itself.

4.1. Lorentz force distribution

Both components of the Lorentz force, fLx ¼ fL � ex and f Lz ¼
fL � ez, see Eq. (3), can be rewritten in terms of the electric potential
/ and become

fLx ¼ �rðTÞB0
o/
oz

and f Lz ¼ rðTÞB0
o/
ox
:

The sign, and hence the orientation of fLx and f Lz, can basically
be defined by the constant magnitude of the magnetic flux density
B0 and the gradient of the electric potential r/. As the orientation
of r/ is fixed with the boundary condition at the electrodes, Eq.
(13), we reverse the direction of fLx and f Lz with the sign of B0.

The spatial distribution of the Lorentz force is specified by the
temperature-dependent electrical conductivity rðTÞ and the gradi-
ent of the electric potential r/. An example for the isolines of / is
shown in Fig. 5 for the planes y ¼ 0 m and z ¼ 0:04 m. On the level
of the electrodes with z P 0:02 m we mainly find components of
o/=ox, see Fig. 5(a). The dashed lines in the view of plane
z ¼ 0:04 m in Fig. 5(b) further show that o/=ox is zero at around
jxj � 0:0165 m. Thus, at the height of the electrodes we only have
components of fLz with reversing orientation at almost straight
lines with jxj � 0:0165 m. High values of o/=ox – hence of fLz –
can be expected around the electrodes due to very close isolines
of /. As / hardly changes at jyjP 0:025 m we expect very small
magnitudes of fLz in this region of the crucible. Also below the elec-
trodes the influence of o/=ox weakens. Here, the intensity of o/=oz
is high, whereas o/=oz is negligible in all other parts of the crucible.
Therefore, the Lorentz force component fLx can only be observed
below the electrodes.

As the electrical conductivity r is a function of the temperature,
the temperature distribution has also an impact on the magnitude
of the Lorentz force. In hot regions the increasing values of rðTÞ
lead to an amplification of the Lorentz force. In general the hot re-
gions – also called hot spots – are located around the electrodes
with already larger/. Depending on the flow direction we observe
hot fluid between the electrodes and at the bottom of the elec-
trodes. The left diagrams in Fig. 6 give the vector field of fL in
the symmetry planes x ¼ 0 m and y ¼ 0 m for B0 ¼ 80 mT (first
row) and B0 ¼ �80 mT (second row). We like to emphasize that
the impact of both components fLx and f Lz is supportive and does
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Fig. 5. Distribution of the electric potential / in V for UE ¼ 15 V in the plane (a) y ¼ 0 m and (b) z ¼ 0:04 m.
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not conflict. We observe large values of fL at the squared edges of
the electrodes. The numerics leads to large values of r/ as the ex-
act solution of the Laplace equation (12) has a singularity at
squared edges [19]. As the high values are restricted to a tiny re-
gion, their influence on the result is small. The view of the plane
z ¼ 0:04 m in the right diagrams of Fig. 6 shows fLz. As expected
we find the largest values in the vicinity of the electrodes along
y ¼ 0 m and a reversing orientation at around jxj � 0:0165 m. The
isolines of B0 ¼ 80 mT (first row) and B0 ¼ �80 mT (second row)
have slightly different paths as result of the unequally distributed
temperature-dependent electrical conductivity.

4.2. Velocity and temperature distribution

Before we discuss the influence of the imposed Lorentz force let
us shortly look at the velocity and temperature field of the pure
thermal convection with B0 ¼ 0 T and UE ¼ 15 V which are shown
in the first row of Fig. 7. In the left and right diagrams of Fig. 7 the
Fig. 6. Lorentz force distribution for B0 ¼ 80 mT (first row) and B0 ¼ �80 mT (second ro
and x ¼ 0 m. The right diagrams give the isolines of the z-component of the Lorentz for
vector field of the velocity u and the temperature T are given for
both symmetry planes, namely the plane y ¼ 0 m, ranging from
0 m 6 x 6 0:04 m, and the plane x ¼ 0 m, ranging from 0 m 6
y 6 0:04 m. The diagrams in the middle of Fig. 7 show the z-com-
ponent of the velocity uz ¼ u � ez in the plane z ¼ 0:04 m. The posi-
tive values of uz indicate that the upward streams are located
around the electrodes for pure thermal convection. We have the
largest velocities in the center of the crucible with x ¼ y ¼ 0 m.
The fluid flows downward in the remaining parts at the crucible
wall with approximately jyjP 0:018 m (indicated by the dashed
lines). In the left diagram of Fig. 7 one can clearly see that the pure
thermal convection mainly involves the fluid at the level of the
electrodes. Below the electrodes there is no driving buoyancy force
due to the well stratified temperature layers with hot fluid close to
the electrode and cold fluid close to the crucible bottom. Conse-
quently, the melt hardly flows in this region and therefore is badly
stirred. In the vicinity of the electrodes the fluid is heated up while
it is flowing upwards and we find the highest temperatures just be-
w) and UE ¼ 15 V. The left diagrams give the vector field of fL at the planes y ¼ 0 m
ce fLz at z ¼ 0:04 m.



Fig. 7. The vector field of the velocity u (left), isolines of the z-component uz ¼ u � ez in mm/s (middle) and the temperature T in K (right) for B0 ¼ 0 T, B0 ¼ 40 mT, B0 ¼ 80 mT
(starting from the first row) and UE ¼ 15 V. The velocity field u and the temperature T are shown for both symmetry planes, namely the plane y ¼ 0 m and the plane x ¼ 0 m.
The z-component of the velocity uz is plotted in the plane z ¼ 0:04 m. The regions with the largest temperature, so called hot-spots, are highlighted in grey.
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low the surface of the melt. The fluid cools down at the surface and
the crucible wall. As the heat loss by radiation at the surface is lar-
ger than the convective heat transfer at the crucible wall we obtain
large temperature gradients at the free surface as expected.

Starting from a system with pure thermal convection we in-
crease stepwise B0 with B0 > 0 T and UE ¼ 15 V. In the second
and third row of Fig. 7 diagrams for B0 ¼ 40 mT and B0 ¼ 80 mT
are given. The vector plots (left) and the contour plot of uz (middle)
show that the vertical component of the Lorentz force fLz in the
center increases u significantly. The downward Lorentz force be-
tween the crucible wall and the electrode leads to a change of
the flow direction in this part of the crucible already for B0 ¼
20 mT (not shown here). But not only the velocity at the level of
the electrodes is affected. The horizontal component of the Lorentz
force fLx controls the fluid flow below the electrodes. The significant
increase of u in this region is illustrated in Fig. 8(a). It gives the
velocity magnitude u ¼ juj measured in terms of velocity magni-
tude without Lorentz force u0 ¼ uðB0 ¼ 0 TÞ along the centerline
of the crucible ðx ¼ y ¼ 0 mÞ. Already at the level of the electrodes
u increases by a factor of two for B0 ¼ 40 mT and by a factor of
approximately 3.5 for B0 ¼ 120 mT. But close to the bottom u mul-
tiplies by almost a factor of four ðB0 ¼ 40 mTÞ up to eight ðB0 ¼
120 mTÞ, thanks to fLx. The Lorentz force does not only increase
the overall velocity, it captures also a region which is not affected
by the buoyancy force and therefore leads to a strong improvement
of the stirring. We can state that the Lorentz force distribution fL is
mainly taken over by the velocity field u. Consequently, the mag-
nitude of the downward stream in the yz-plane reduces with
increasing B0. Furthermore, the fluid at the bottom of the crucible
with y P 0:025 m is still almost immobilized as the Lorentz force is
very weak. The increase of u with B0 results in a better temperature
homogenization as the values of the highest temperature decrease.
Fig. 8(b) illustrates the temperature homogenization on the basis
of the temperature along x ¼ y ¼ 0 m.

Now we reverse the direction of the magnetic field and decrease
the magnetic field stepwise starting again from B0 ¼ 0 T. First let us
consider cases with B0 ¼ �40 mT and B0 ¼ �70 mT which are
shown in the second and third row in Fig. 9. Now the vertical com-
ponent of the Lorentz force fLz supports the thermally driven up-
ward flow between the crucible wall and the electrodes as uz

increases, compare uz for B0 ¼ 0 T with uz for B0 ¼ �40 mT and
B0 ¼ �70 mT in Fig. 9. Again, fLx controls the flow below the elec-
trodes. In contrast to the cases with B0 > 0 T, the fluid flows from
the center to the crucible wall below the electrode. Between the
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distribution is shown.
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electrodes the downward acting Lorentz force does not lead to an
abrupt overall change of the flow direction. At the upper half level
of the electrodes uz is still positive, but the magnitude is reduced
significantly compared to the thermally driven flow with B0 ¼ 0 T
(first row in Fig. 10). The upward stream is driven by buoyancy
due to the large temperature gradients just below the surface. Just
the fluid below approximately z ¼ 0:03 m ðB0 ¼ �70 mTÞ is flow-
ing downwards with a very small magnitude driven by Lorentz
force. However, the small magnitudes of the velocity are an indica-
tor for almost equally forces – neither buoyancy nor Lorentz force
is clearly dominating in the center of the crucible. As a result, the
region of the almost stagnant flow regime at the bottom of the cen-
ter expands. On the one hand, fL leads to a better motion below the
electrodes and larger velocities at the crucible wall. On the other
hand, the motion between the electrodes slows down and leads
to an extension of the almost stagnant flow at the crucible bottom.
At the same time the magnitude of the downward stream at the
crucible wall and its proportion in the plane x ¼ 0 m, both increase.
Fig. 10(a) shows the reduction of u in the centerline for B0 ¼
�20 mT, �40 mT and �60 mT in comparison to u0 ¼ uðB0 ¼ 0 TÞ.
Especially for z 6 0:03 m u reduces dramatically and reaches
nearly zero. Due to the low velocities in the centerline the temper-
atures between the electrodes and the temperature differences in-
crease significantly as it is shown in Fig. 10(b).

If we now slightly change the magnetic flux density from
B0 ¼ �70 mT to B0 ¼ �71 mT we observe a drastic change in the
flow pattern and temperature distribution, compare third and forth
row of Fig. 9. In the centerline buoyancy cannot compensate fLz

which leads to a change of flow direction with large changes of
the velocity magnitude. Now the fluid in the vicinity of the center-
line is flowing downwards, moving below the electrodes to the
crucible wall and between the crucible wall and the electrode to
the surface. The velocity magnitude in the center, especially for
z < 0:03 m, is now again a multiple of that without Lorentz forces,
see curves with B0 ¼ �80 mT, �100 mT, �120 mT in Fig. 10(a). For
B0 6 �71 mT the qualitative picture of the velocity field u corre-
sponds to the distribution of the Lorentz force fL and hence, is
now opposite to that of B0 > 0 T. Still we find the largest tempera-
ture in the vicinity of the electrodes, but now at their bottom as the
fluid is heated up while it is flowing downwards between the
electrodes.

If we now start at a converged solution with B0 6 �71 mT and
increase stepwise B0 the transition of the flow pattern takes place
at different B0. We pass through a hysteresis for which we obtain
two different steady solutions with unequal flow pattern for one
set of parameters depending on the starting condition of the calcu-
lations. The cases with a dominating upward stream between the
electrodes we name ‘upper branch’ of the hysteresis and the cases
with dominating downward stream we name ‘lower branch’. Let us
stress that the transition from the upper to the lower branch is
characterized by an abrupt change of the flow pattern. For all UE

we studied this transition of the flow happens in the same manner
like the already described one for UE ¼ 15 V. In contrast there exist
qualitative differences for the transition from the lower to the
upper branch of the hysteresis depending on UE. If we assume a
minimum change of the magnetic flux density of 1 mT, the transi-
tion is more like a jump for UE ¼ 9 V and UE ¼ 12 V. For UE ¼ 15 V
and UE ¼ 18 V we observe a more continuous change of the flow
pattern. Let us first look at the transition from the lower to the
upper branch for UE ¼ 15 V given in Fig. 11. Here, converged solu-
tions of the lower branch are used as starting condition for a sys-
tem with increasing B0. The first row of Fig. 11 gives the solution
for B0 ¼ �70 mT which we obtained using the converged solution
for B0 ¼ �71 mT (last row in Fig. 10) as starting condition. The dif-
ferences between the flow pattern and temperature distributions
of the solutions of the upper branch (third row of Fig. 10 with
B0 ¼ �70 mT) and the lower branch (first row of Fig. 11 with
B0 ¼ �70 mT) are obvious. Like in the case with B0 ¼ �71 mT we
find a downward stream between the electrodes, upward streams
between the crucible wall and one electrode and the hot spot just
below the bottom of the electrodes for B0 ¼ �70 mT on the lower
branch. If we reduce the Lorentz force by increasing B0 to
�50 mT (second row in Fig. 11) the motion decelerates in general
and buoyancy becomes more relevant in some regions of the melt.
As shown in the plane x ¼ 0 m the temperature gradients just be-
low the surface lead to an enormous deceleration of the downward
motion. The same holds for the region between the electrodes with
approximately z 6 0:04 m. A further reduction of the Lorentz force
results in a change of the flow direction in these regions. The flow
splits into several vortices which can be seen in the plane x ¼ 0 m
for B0 ¼ �45 mT (third row of Fig. 11). For z < 0:035 m the fluid
flows up with the lower vortex having a very small magnitude.
For z > 0:035 m the motion is still dominated by Lorentz force
and flows downwards. The isolines of uz show that the downward
flow between the electrodes is limited to a small region (bounded
by the dashed lines). When increasing B0 per 5 mT to B0 ¼ �40 mT
the Lorentz force driven downward flow between the electrodes is
limited to z P 0:05 m. But in the centerline the velocity magnitude
of the downward flow is still larger than the magnitude of the up-
ward flow. While we increase B0 from �70 mT up to �40 mT the
hot spot in the vicinity of the electrodes moves from the bottom
of the electrodes ðB0 ¼ �70 mTÞ to the region between the elec-
trodes. There, the hot spot is moving from z � 0:023 m ðB0 ¼
�50 mTÞ to z � 0:048 m ðB0 ¼ �40 mTÞ. The downward stream



Fig. 9. The vector field of the velocity u (left), isolines of the z-component uz ¼ u � ez in mm/s (middle) and the temperature T in K (right) for B0 ¼ 0 T, B0 ¼ �40 mT,
B0 ¼ �70 mT, B0 ¼ �71 mT (starting from the first row) and UE ¼ 15 V. The results are obtained by starting from a system with B0 ¼ 0 T and reducing stepwise B0. Always a
converged solution is used as starting condition for the calculation with reduced B0.
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between the electrodes disappears completely for B0 ¼ �39 mT as
shown in the last row of Fig. 11. Thus, the transition from the lower
to the upper branch is characterized by the merging of the two vor-
tices in the centerline to a single vortex.

Fig. 12 illustrates the transition from the lower to the upper
branch for UE ¼ 12 V. Just before the transition, B0 ¼ �46 mT,
buoyancy leads to a reversing of the flow direction only in the cen-
terline with z 6 0:032 m. The temperature gradient below the sur-
face does not lead to upward streams and hence, the flow does not
split into several vortices.

One possibility to illustrate the regime of the two-valued
solutions and the transition of the flow pattern is to look at the
maximum z-component of the velocity at x ¼ y ¼ 0 m, which we
label as uzmax. The transition of the flow pattern is characterized
by a shift of the sign of uzmax, whereas uzmax is greater than zero
at the upper branch and smaller than zero at the lower branch.
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In Fig. 13(a) uzmax is given as a function of B0 for various UE. The
right diagram gives a detailed view of the region with two solu-
tions. First of all, the region of two-valued solutions uzmaxðB0Þ de-
pends on UE. As summarized in Table 3 we obtain two solutions
between �58 mT 6 B0 6 �46 mT for UE ¼ 9 V. This range expands
to �71 mT 6 B0 6 �46 mT if we consider UE ¼ 12 V. A further in-
crease of the electric potential difference to UE ¼ 15 V only leads
to a similar parameter range of two solutions, which is
�70 mT 6 B0 6 �40 mT. For UE ¼ 18 V the change from uzmax > 0
to uzmax < 0 happens if we start at a steady solution with
B0 ¼ �56 mT and apply B0 ¼ �57 mT. Therefore, the parameter
range with two steady solutions changes to �56 mT 6 B0 6

�27 mT. In Fig. 13(b) uzmax is measured in terms of the maximum
z-component of the velocity without Lorentz force, uzmax;0 ¼
uzmaxðB0 ¼ 0Þ. The diagram uzmax=uzmax;0ðB0Þ confirms that the veloc-
ity linearly increases with B0 for B0 > 0 T. The deceleration of the
motion in the upper branch with B0 < 0 T is reflected in
Fig. 13(b) as 0 < uzmax=uzmax;0 < 1.

4.3. Maximum stretching function

For the application not only the effects of the Lorentz force on
the temperature distribution and velocity field are important.
Especially the effect on the homogenization – how the mixing in
laminar flow can be improved – is of interest. Laminar mixing is
characterized by molecular diffusion on the interfaces between
two fluids or inhomogeneities. It is based on interfaces increase
by deformation of fluid volumes. There exist different definitions
to quantify the mixing effect [31]. Typically deformations of infin-
itesimal elements, lines, surfaces and volumes are used which are
based on the stretching function. The stretching function is a mea-
sure of the deformation velocity of an element and its theoretical
maximum value a is given by [33]

a ¼
ffiffiffiffiffiffiffiffiffiffiffi
D : D
p

; ð17Þ

where D ¼ 1=2ðruþ ðruÞTÞ is the symmetric stretching tensor. As
pure rotation does not contribute to the deformation of fluid vol-
umes the antisymmetric vorticity tensor is not part of the definition
of a. a can easily be obtained from presented simulation data of the
velocity field. Large a lead to large deformations and an increase of
the interface between the fluid volumes. The goal of each mixing
techniques is to maximize the deformation and hence, to maximize
a in the whole volume. It is a first step towards the evaluation of the
influence of the Lorentz force on laminar mixing.

Fig. 14 shows isolines of a for pure thermal convection (first
row) and for Lorentz force dominated flows with B0 ¼ 80 mT (sec-
ond row) and B0 ¼ �80 mT (third row). Due to low velocities below
the electrodes and close to the bottom for B0 ¼ 0 T, a is very small
in this region as indicated by the grey shaded areas. Larger a we
find around the electrodes and for y P 0:035 m in the plane
x ¼ 0 m because of the additional isolines. In Lorentz force domi-
nated regimes (second and third row of Fig. 14) a increases signif-
icantly as the grey shaded areas almost disappeared, especially
close to the bottom for z 6 0:02 m. We can observe some differ-
ences in the a distribution for B0 ¼ 80 mT and B0 ¼ �80 mT even
though the magnitude of both magnetic flux densities is equal
and the flow is dominated by the Lorentz force. For B0 ¼ 80 mT a
hardly changes for y P 0:025 m. But for B0 ¼ �80 mT we observe
a slight increase of a in this region due to closer isolines. The larg-
est values of a we find in the vicinity of the electrodes for both
signs of B0. In the case of B0 ¼ 80 mT the isoline density is largest
between the electrodes. In contrast the isoline density ist largest
between the crucible wall and one electrode for B0 ¼ �80 mT.

Slight differences also exist between the solutions of the upper
and the lower branch of the two-valued regime which are obtained
with the same set of parameters. As shown in Fig. 15 for
B0 ¼ �40 mTa differs in the region between the electrodes. Due
to the split of the flow in vortices a is larger for the solutions of
the lower branch (second row in Fig. 15) than for the upper branch
(first row in Fig. 15) of the hysteresis.

4.4. Global analysis

During the discussions in the previous section we gained a good
insight into the electromagnetically flow control by studying flow
pattern, temperature distributions, variations of local velocities
and temperatures and the distribution of the maximum stretching
function. In this section a coarse measure of the overall influence of
the imposed Lorentz force on the flow can be given with volume
averaged quantities.

First of all we define the volume averaged velocity magnitude �u
according to

�u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
ðVÞ
juj2 dV=V

s
: ð18Þ

In Fig. 16 �u is given in terms of �u0 ¼ �uðB0 ¼ 0 TÞ. Note that �u=�u0

is never smaller than unity except for B0 ¼ �20 mT and UE ¼ 15 V.
It indicates that the Lorentz force leads to an overall increase of the
kinetic energy for almost all considered cases. For B0 P 20 mT �u is
almost a linear function of B0 and can become a multiple of �u0, e.g.
�u � 2�u0 for UE ¼ 15 V, B0 ¼ 60 mT and �u � 3�u0 for UE ¼ 15 V,
B0 ¼ 100 mT. In general, the larger UE and B0 become, the larger
is the ratio u=�u0. For B0 < 0 T the discontinuous transition of the
flow pattern from uzmax > 0 to uzmax < 0 is reflected by a jump in
the graph �u=�u0ðB0Þ. Again, after the change of the flow direction



Fig. 11. Velocity and temperature distribution for a system with UE ¼ 15 V and stepwise increased B0 (B0 = �70 mT, �50 mT, �45 mT, �40 mT, �39 mT) starting with the
converged solution for B0 ¼ �71 mT.
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Fig. 12. Velocity and temperature distribution showing the transition from the lower to the upper branch of the hysteresis for UE ¼ 12 V.
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Fig. 13. (a) Maximum z-component of the velocity in the centerline of the crucible uzmax as function of B0 for various UE . In (b) the ratio between
uzmax and uzmax;0 ¼ uzmaxðB0 ¼ 0 TÞ is given. The detailed views (right) show that the range of two-valued solutions uzmaxðB0Þ depends significantly on UE .
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�u is a linear function of B0. Interestingly, in the linear regime with
B0 < 0 T the ratio �u=�u0 is larger than for the same magnitude of B0

with B0 > 0 T. For example we have �u=�u0 � 4:5 for UE ¼ 18 V,
B0 ¼ 120 mT and �u=�u0 � 5 for UE ¼ 18 V, B0 ¼ �120 mT. Before
reaching the linear regimes (small magnitudes of B0) buoyancy is
still present and influencing the flow. The Lorentz force does not
fully control the motion and hence, the slope of the graph
�u=�u0ðB0Þ is smaller than in the linear regimes. Especially for
B0 ¼ �20 mT the kinetic energy hardly increases as 1:00 6
�u=�u0 6 1:04. If the flow pattern is identical to the Lorentz force



Table 3
Range of magnetic flux densities B0 for which we obtain two different solutions
depending on the starting conditions of the calculations. The range of B0 varies with
the electric potential difference UE .

UE ðVÞ Range of two-valued solution B0 ðmTÞ

9 �46 to �58
12 �46 to �71
15 �40 to �70
18 �27 to �56
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distribution we can observe the linear relation between �u and B0.
The right diagrams in Fig. 16 give detailed views of the two-valued
regime. The discontinuous change of the flow pattern from
uzmax > 0 to uzmax < 0 is reproduced by a discontinuous increase
of �u=�u0ðB0Þ for all UE. But the change from uzmax < 0 to uzmax > 0 re-
sults in a jump in the �u=�u0ðB0Þ graph only for UE ¼ 9 V and
UE ¼ 12 V. The smooth transitions for UE ¼ 15 V and UE ¼ 18 V
indicate that the kinetic energy in the system does not change dur-
ing the change of the flow pattern.

The effect on the temperature and the temperature homogeni-
zation can be illustrated by the maximum temperature in the melt
Tmax and the difference of the maximum and minimum tempera-
ture in the melt
Fig. 14. Isolines of the maximum stretching function a in s�1 in the planes y ¼ 0 m, x ¼
convection. The second ðB0 ¼ 80 mTÞ and third row ðB0 ¼ �80 mTÞ show a for Lorentz
stretching function with a 6 0.02 s�1. Between the isolines the difference of a is 0.04 s�
DT ¼ Tmax � Tmin: ð19Þ

In Fig. 17(a) TmaxðB0Þ and in Fig. 17(b) DT=DT0ðB0Þ with DT0 ¼
DTðB0 ¼ 0 TÞ are given. For B0 > 0 T and all UE we have DT=
DT0 < 1 which indicates that the temperature homogenization im-
proves. The smaller UE the smaller DT=DT0 becomes. If we look at
B0 < 0 T and decrease B0 starting from B0 ¼ 0 T we observe that DT
significantly increases which indicates a worse temperature
homogenization than without Lorentz force. For UE ¼ 9 V we have
a maximum of DT=DT0 � 1:22, but if we double UE the maximum
temperature difference in the melt is DT=DT0 � 1:73 which is
reached just before the change of flow direction. Also the transition
from the lower to the upper branch of the hysteresis is character-
ized by DT=DT0 > 1. The difference between DT=DT0 of the various
UE is much larger for negative B0 than for positive B0, e.g. compare
the results of B0 ¼ �120 mT with B0 ¼ 120 mT in Fig. 17(b). The
reason might be the different locations of the temperatures hot
spots each having different heat transport mechanism to the sur-
rounding air with different cooling rates. After the change of flow
direction for B0 < 0 T hot fluid at the bottom of the electrodes cools
down at the crucible wall. In contrast for B0 > 0 T the hot fluid just
below the surface is first cooled by radiative heat transfer. The heat
flux at the crucible wall is approximately one order of magnitude
smaller than the heat flux by radiation leading to a better cooling
rate for B0 > 0 T.
0 m (left) and z ¼ 0:04 m for UE ¼ 15 V. In the first row a is given for pure thermal
force dominated flows. The grey shading highlights areas with small values of the
1.



Fig. 15. Like in Fig. 14 the isolines of a are shown for UE ¼ 15 V. Here both plots are obtained for B0 ¼ �40 mT, whereas the first row belongs to the upper branch of the
hysteresis with uzmax > 0 and the second row belongs to the lower branch with uzmax < 0.
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Finally, let us have a look at the overall volume averaged Lor-
entz force

�f L ¼ V�1
Z
ðVÞjfLjdV ; ð20Þ

which is given in Fig. 18 as a function of B0 for various UE. First of all,
for B0 > 0 T and UE ¼ 9 V, 12 V, and 15 V �f L is almost linearly
increasing with B0. The parameters lead to a temperature range,
in which the electrical conductivity is hardly changing with temper-
ature. Therefore, the electric current density is almost independent
of the flow – and �f L is a linear function of B0. The impact of temper-
ature-dependent electrical conductivity can be seen for UE ¼ 18 V
and B0 > 0 T. Here we have a larger temperature range, in which a
reduction of T leads to a reduction of rðTÞ and J. As a result �f L

slightly deviates from linearity. A deviation from linearity also ex-
ists in the parameter space in which we obtain two solutions. It
can been seen already for UE ¼ 12 V, 15 V and is eyecatching for
UE ¼ 18 V. Fig. 19 gives an answer to the question posed in the
introduction:”Does the velocity depend linearly on the Lorentz force
in a three-dimensional configuration as predicted by the one-
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Fig. 16. Ratio �u=�u0 as function of B0 being a coarse global measure of the overall influence
and �u0 ¼ �uðB0 ¼ 0 TÞ is the volume averaged velocity for pure thermal convection with
�u=�u0 > 1 for almost all B0–0.
dimensional analytical models?”. The regions in which �u=�u0ð�f LÞ is
almost a linear function are highlighted by the dashed straight lines.
Again we identify two regions of linearity: for B0 > 0 T shown in
Fig. 19(a) and for solutions of the lower stable branch after the tran-
sition from the upper branch with B0 < 0 T shown in Fig. 19(b).

5. Summary and conclusion

We have presented three-dimensional numerical studies of
electromagnetically controlled thermal convection of glass melt
in small scale crucible with two rod electrodes. The Lorentz force
was imposed into the melt by the interaction of an external mag-
netic field with a constant density B0 and an electric current den-
sity applied over the electrodes. During the simulations we
varied the magnetic flux density between �120 mT 6 B0 6

120 mT and the electrode potential between 3 V 6 UE 6 18 V.
The studies show that the Lorentz force leads to an overall in-

crease of the kinetic energy in the system. For example for
B0 ¼ 120 mT and UE ¼ 18 V the mean velocity is 4.5 times larger
than without Lorentz force. Especially close to the bottom, a region
B0 [T]
−0.06 −0.04

UE=9 V
UE=12 V

−0.06 −0.04
1

1.5

2

2.5

3

3.5

4

B0 [T]

UE=15 V
UE=18 V

of the Lorentz force. The volume averaged velocity �u is defined by �u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
juj2 dV=V

q
out Lorentz force. The Lorentz force increases the kinetic energy in the system, as
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Fig. 17. (a) The maximum temperature in the melt Tmax as function of B0. In (b) the ratio of the temperature difference DT ¼ Tmax � Tmin and the temperature difference of the
pure thermal convection DT0 ¼ DTðB0 ¼ 0 TÞ is given. The temperature homogenization improves with B0 if DT=DT0 < 1 and changes to the worse for DT=DT0 > 1.
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Fig. 18. Volume averaged Lorentz force �f L ¼ V�1 R jfL jdV as function of the
magnetic flux density B0 for various electrode potentials UE .
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which is not affected by buoyancy, we observe a significant in-
crease of the velocity. If the flow pattern is defined by the Lorentz
force distribution, the mean velocity is a linear function of fL. For
B0 < 0 T the transition from a buoyancy dominated flow regime
to a Lorentz force dominated one and vice versa is characterized
by a discontinuous modification of the flow pattern between the
electrodes. The transition to a Lorentz force dominated regime
takes place for different B0 than the transition to a buoyancy dom-
inated regime. As a result we pass through a hysteresis and obtain
two steady solutions for one set of parameters depending on the
starting conditions. In this regime the maximum temperatures in
the melt increase considerably and lead to a worsening of the tem-
perature homogenization. Only for B0 > 0 T we observe an
improvement of the temperature homogenization for all UE.

The present model is given by the experimental studies of Krie-
ger [20]. The dimensions of the setup are inspired by typical
dimensions of forehearts and feeder systems. As we studied mag-
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ut coarse indicator for how the Lorentz influences the kinetic energy. The dashed
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netic flux densities which are realizable in industrial applications,
the present results can be used to estimate the effect on the flow
with additional Lorentz forces. Even more, the significant results
should be a motivation to move the establishment of electromag-
netic flow control in glass processing forward. As the improvement
of the homogeneity by Lorentz forces is an important measure it
should be quantified more precisely in the future. Common is the
statistical analysis of the deformation of particles, preferable
length and surface stretch [31,9,33]. For this method the path of
many particles has to be calculated. Time-dependent calculations
would allow the application of higher constant electrical heat input
qin. Furthermore, one could investigate the impact of frequent var-
iation of the B0 sign – hence the fL orientation. It is imaginable that
the frequent variation of the B0-direction will significantly improve
the mixing rate as it is known from studies with mechanical stir-
rers. We have shown that the electric potential and hence, the elec-
trode configuration define the Lorentz force distribution. Various
parameter studies about the electrode configuration could give
optimal setups which maximize the effect of the Lorentz force on
the flow. Beside the studied top-electrode, side- and bottom-elec-
trodes should be considered as well.
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Appendix A. Estimation of the heat transfer coefficient h

The starting point for the estimation of the heat transfer coeffi-
cient h at the outer surface of the crucible wall is the laminar free
convection on an isothermal vertical surface. For this case the
Nusselt number

Nu ¼ hH
kair

; ð21Þ

a measure of the convective heat transfer, can be rewritten in terms
of the Grashof number Grair and an interpolation formula gðPrairÞ of
the Prandtl number Prair of the air outside the crucible according to
[18]

Nu ¼ 4
3

Grair

4

� �1=4

gðPrairÞ: ð22Þ

If we assume a typical temperature difference between the cru-
cible wall and the surrounding of 50 K and determine the air prop-
erties at the ambient temperature T1, we obtain a heat transfer
coefficient of h � 4 W/m2 K.
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